Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors.
نویسندگان
چکیده
Following spinal cord injury (SCI) neurons caudal to the injury are capable of rhythmic locomotor-related activity that can form the basis for substantial functional recovery of stepping despite the loss of crucial brain stem-derived neuromodulators like serotonin (5-HT). Here we investigated the contribution of constitutive 5-HT(2) receptor activity (activity in the absence of 5-HT) to locomotion after SCI. We used a staggered hemisection injury model in rats to study this because these rats showed a robust recovery of locomotor function and yet a loss of most descending axons. Immunolabeling for 5-HT showed little remaining 5-HT below the injury, and locomotor ability was not correlated with the amount of residual 5-HT. Furthermore, blocking 5-HT(2) receptors with an intrathecal (IT) application of the neutral antagonist SB242084 did not affect locomotion (locomotor score and kinematics were unaffected), further indicating that residual 5-HT below the injury did not contribute to generation of locomotion. As a positive control, we found that the same application of SB242084 completely antagonized the muscle activity induced by exogenous application of the 5-HT(2) receptor agonists alpha-methyl-5-HT (IT). In contrast, blocking constitutive 5-HT(2) receptor activity with the potent inverse agonist SB206553 (IT) severely impaired stepping as assessed with kinematic recordings, eliminating most hindlimb weight support and overall reducing the locomotor score in both hind legs. However, even in the most severely impaired animals, rhythmic sweeping movements of the hindlimb feet were still visible during forelimb locomotion, suggesting that SB206553 did not completely eliminate locomotor drive to the motoneurons or motoneuron excitability. The same application of SB206553 had no affect on stepping in normal rats. Thus while normal rats can compensate for loss of 5-HT(2) receptor activity, after severe spinal cord injury rats require constitutive activity in these 5-HT(2) receptors to produce locomotion.
منابع مشابه
The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury.
In this review we will discuss different ways for re-establishing serotonergic activity that can enhance recovery of coordinated plantar stepping after spinal cord injury in adult rats. It is well known that serotoninergic neurons located in the medulla are able to initiate locomotor activity. This effect is exerted by actions on motoneurons and on neurons of the locomotor CPG (Central Pattern ...
متن کاملConstitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury.
In animals, the recovery of motoneuron excitability in the months following a complete spinal cord injury is mediated, in part, by increases in constitutive serotonin (5-HT2) and norepinephrine (α1) receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents (CaPICs) without the ligands serotonin and norepinephrine below the injury. In this study we soug...
متن کاملP79: The Repair Effects of Histone Deacetylases Inhibitors on Improves Locomotion: In Vivo Evaluation with Electromyography (EMG) after Spinal Cord Injury
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملThe role of the serotonergic system in locomotor recovery after spinal cord injury
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of...
متن کاملConstitutively Active 5HT2/α1 Receptors Facilitate Muscle Spasms
45 46 In animals, the recovery of motoneuron excitability in the months following a complete spinal cord 47 injury is mediated, in part, by increases in constitutive serotonin (5HT2) and noradrenaline (α1) 48 receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents 49 (CaPICs) without the ligands serotonin and noradrenaline below the injury. Here, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 104 6 شماره
صفحات -
تاریخ انتشار 2010